- 57

See here for installing on windows. 1: Refer to this Dockerfile and this for information on how the docker image was built.

http://www.deepschool.iohttps://github.com/sachinruk/deepschool.io

Tags | deep-learning keras python3 jupyter-notebook |

Implementation | Jupyter Notebook |

License | Apache |

Platform |

This is the code for the article 'Turning design mockups into code with deep learning' on FloydHub's blog. Within three years deep learning will change front-end development. It will increase prototyping speed and lower the barrier for building software.

keras deep-learning seq2seq encoder-decoder lstm floydhub machine-learning cnn cnn-keras jupyter-notebook jupyterJupyter notebooks for using & learning Keras

deep-learning keras-notebooks kerasA live training loss plot in Jupyter Notebook for Keras, PyTorch and other frameworks. An open source Python package by Piotr MigdaÅ‚ et al. Visual feedback allows us to keep track of the training process. Now there is one for Jupyter.

jupyter-notebook keras keras-visualization deep-learning pytrochThis is the code repository for Deep Learning with Keras, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. This book starts by introducing you to supervised learning algorithms such as simple linear regression, classical multilayer perceptron, and more sophisticated Deep Convolutional Networks. In addition, you will also understand unsupervised learning algorithms such as Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks. Recurrent Networks and Long Short Term Memory (LSTM) networks are also explained in detail. You will also explore image processing involving the recognition of handwritten digital images, the classification of images into different categories, and advanced object recognition with related image annotations. An example of the identification of salient points for face detection is also provided.

Accelerating Deep Learning with Multiprocess Image Augmentation in Keras

deep-learning keras tensorflow multiprocessingDeep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearningEarlier this year, Amir Avni used neural networks to troll the subreddit /r/Colorization - a community where people colorize historical black and white images manually using Photoshop. They were astonished with Amir’s deep learning bot - what could take up to a month of manual labour could now be done in just a few seconds. I was fascinated by Amir’s neural network, so I reproduced it and documented the process. Read the article to understand the context of the code.

jupyter-notebook keras deep-learning colorization tensorflow fusion-layer floydhubHow simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pixel and only see the prediction probability? Turns out it is very simple. In many cases, an attacker can even cause the network to return any answer they want. The following project is a Keras reimplementation and tutorial of "One pixel attack for fooling deep neural networks".

keras cnn cifar10 machine-learning tensorflow deep-learning neural-network imagenet image-processing nlpIf you are reading this on GitHub, the demo looks like this. Please follow the link below to view the live demo on my blog. Convolutional Neural Networks (CNN), a technique within the broader Deep Learning field, have been a revolutionary force in Computer Vision applications, especially in the past half-decade or so. One main use-case is that of image classification, e.g. determining whether a picture is that of a dog or cat.

deep-learning image-classification ai machine-learning food-classification keras tensorflowThe ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. The workspace requires Docker to be installed on your machine (ðŸ“– Installation Guide).

nlp docker kubernetes data-science machine-learning r deep-learning jupyter anaconda tensorflow gpu scikit-learn vscode jupyter-notebook data-visualization pytorch neural-networks data-analysis jupyter-labThis repository contains Jupyter notebooks implementing the code samples found in the book Deep Learning with Python (Manning Publications). Note that the original text of the book features far more content than you will find in these notebooks, in particular further explanations and figures. Here we have only included the code samples themselves and immediately related surrounding comments.These notebooks use Python 3.6 and Keras 2.0.8. They were generated on a p2.xlarge EC2 instance.

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

machine-learning deep-learning text-analytics classification clustering natural-language-processing computer-vision data-science spacy nltk scikit-learn prophet time-series-analysis convolutional-neural-networks tensorflow keras statsmodels pandas deep-neural-networksThis repository contains lecture transcripts and homework assignments as Jupyter Notebooks for the first of three Kadenze Academy courses on Creative Applications of Deep Learning w/ Tensorflow. It also contains a python package containing all the code developed during all three courses. The first course makes heavy usage of Jupyter Notebook. This will be necessary for submitting the homeworks and interacting with the guided session notebooks I will provide for each assignment. Follow along this guide and we'll see how to obtain all of the necessary libraries that we'll be using. By the end of this, you'll have installed Jupyter Notebook, NumPy, SciPy, and Matplotlib. While many of these libraries aren't necessary for performing the Deep Learning which we'll get to in later lectures, they are incredibly useful for manipulating data on your computer, preparing data for learning, and exploring results.

jupyter-notebook neural-network tensorflow deep-learning mooc dockerfile machine-learning tutorial workshopBuild and tune investment algorithms for use with artificial intelligence (deep neural networks) with a distributed stack for running backtests using live pricing data on publicly traded companies with automated datafeeds from: IEX Cloud, Tradier and FinViz (includes: pricing, options, news, dividends, daily, intraday, screeners, statistics, financials, earnings, and more). This will pull Redis and Minio docker images.

docker kubernetes redis deep-neural-networks options deep-learning jupyter tensorflow helm s3 keras minio iex helm-charts stocks algorithmic-trading deep-learning-tutorial tradier backtesting iexcloud iextradingMeta learning is an exciting research trend in machine learning, which enables a model to understand the learning process. Unlike other ML paradigms, with meta learning you can learn from small datasets faster. Hands-On Meta Learning with Python starts by explaining the fundamentals of meta learning and helps you understand the concept of learning to learn. You will delve into various one-shot learning algorithms, like siamese, prototypical, relation and memory-augmented networks by implementing them in TensorFlow and Keras. As you make your way through the book, you will dive into state-of-the-art meta learning algorithms such as MAML, Reptile, and CAML. You will then explore how to learn quickly with Meta-SGD and discover how you can perform unsupervised learning using meta learning with CACTUs. In the concluding chapters, you will work through recent trends in meta learning such as adversarial meta learning, task agnostic meta learning, and meta imitation learning.

reinforcement-learning tensorflow keras one-shot-learning reptile maml mann zero-shot-learning ntm shot-learning siamese-network relation-network metalearning few-shot-learning prototypical-networks meta-sgd matching-networks deep-meta-learning meta-imitation-learning prototypical-networkAmazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

pytorch data-augmentation kaggle-competition kaggle deep-learning computer-vision keras neural-networks neural-network-example transfer-learningThis repository contains a collection of materials for teaching/learning Python 3 (3.5+). If you can not access Python and/or Jupyter Notebook on your machine, you can still follow the web based materials. However, you should be able to use Jupyter Notebook in order to complete the exercises.

teaching-materials python3 jupyter-notebook learning-python python-exercisesA course on reinforcement learning in the wild. Taught on-campus at HSE and YSDA and maintained to be friendly to online students (both english and russian). The syllabus is approximate: the lectures may occur in a slightly different order and some topics may end up taking two weeks.

reinforcement-learning course-materials deep-learning deep-reinforcement-learning git-course mooc theano lasagne tensorflow pytorch pytorch-tutorials kerasCNN's with Noisy Labels - This notebook looks at a recent paper that discusses how convolutional neural networks that are trained on random labels (with some probability) are still able to acheive good accuracy on MNIST. I thought that the paper showed some eye-brow raising results, so I went ahead and tried it out for myself. It was pretty amazing to see that even when training a CNN with random labels 50% of the time, and the correct labels the other 50% of the time, the network was still able to get a 90+% accuracy. Character Level RNN (Work in Progress) - This notebook shows you how to train a character level RNN in Tensorflow. The idea was inspired by Andrej Karpathy's famous blog post and was based on this Keras implementation. In this notebook, you'll learn more about what the model is doing, and how you can input your own dataset, and train a model to generate similar looking text.

tensorflow deep-learning machine-learningIPython Notebook(s) demonstrating deep learning functionality.IPython Notebook(s) demonstrating scikit-learn functionality.

machine-learning deep-learning data-science big-data aws tensorflow theano caffe scikit-learn kaggle spark mapreduce hadoop matplotlib pandas numpy scipy keras
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**